Exercise 2

1. If a is a positive integer, then $a^{2}+a^{4} \equiv 0(\bmod 5)$ if
(a) $a \equiv 2(\bmod 5)$
(b) $a \equiv 3(\bmod 5)$
(c) 5 divides a
(d) None of the above

Ans. (a),(b) and (c). Check by substitution
2. If n is a positive integer, such that $n^{2} \equiv x(\bmod 8)$. Which of the following is/are possible value(s) of x.
(a) 1
(b) 2
(c) 3
(d) 5

Ans: (a)
Let $n=4 k+r$, then $n^{2}=16 k^{2}+8 k r+r^{2} \equiv r^{2}(\bmod 8)$. Hence, check for $r \in\{0,1,2,3\}$
3. If p is a prime, then p can be congruent to which of the following modulo 12.
(a) 2
(b) 5
(c) 7
(d) 9

Ans: (a), (b) and (c). $p=2, p=5, p=7$ are examples for the first three options respectively. (d) cannot be the answer as 3 divides all numbers of the form $12 k+9$.
4. If a and b are real number then, the statement $\frac{a+b}{2} \geq \sqrt{a b}$
(a) is always true
(b) is true only when a and b are positive
(c) is true only when $a=b$
(d) is always false

Ans. (b)
$(a-b)^{2} \geq 0 \Rightarrow a^{2}-2 a b+b^{2} \geq 0 \Rightarrow a^{2}+2 a b+b^{2} \geq 4 a b \Rightarrow \frac{(a+b)^{2}}{4} \geq a b$ If a and b are positive taking square-root on both sides does not change the inequality $\frac{a+b}{2} \geq \sqrt{a b}$
5. If x, y are two real numbers then which of the following is/are true
(a) $x^{2}+y^{2} \geq 2 x y$
(b) $x^{2}+y^{2} \geq 2 x y$ or $x^{2}+y^{2} \leq x y$
(c) $x^{2}+y^{2} \geq 2 x y$ and $x^{2}+y^{2} \geq 2 x+2 y-2$
(d) None of the above

Ans. (a), (b) and (c)
$(x-y)^{2} \geq 0 \Longrightarrow x^{2}+y^{2}-2 x y \geq 0$
$(x-1)^{2}+(y-1)^{2} \geq 0 \Longrightarrow x^{2}+y^{2}-2 x-2 y+1+1 \geq 0$
6. If a and b are two primes $(a \neq b$ and $a, b \geq 2)$ then which of the following is/are true.
(a) $a^{2}+b^{2} \geq 13$
(b) $a^{2}+b^{2} \geq 34$ or ab is even
(c) $(a+b)^{2} \geq 4 a b$
(d) None of the above

Ans: (a), (b) and (c).
The two smallest primes satisfying the condition are 2 and 3 , hence $a^{2}+b^{2}$ is at least 13 .
If ab is odd, the two smallest primes satisfying the condition are 3 and 5 , hence $a^{2}+b^{2}$ is at least 34 .
$(a+b)^{2} \geq 4 a b$ for all a and b
7. If n is a positive integer, such that $n^{2} \equiv x(\bmod 12)$. Which of the following is/are possible value(s) of x.
(a) 1
(b) 2
(c) 21
(d) 3

Ans: (a) and (c). Let $n=6 k+r$. This problem is then similar to problem 2.
8. Let a, b, c be the 3 sides of a right angled triangle with c as the hypotenuse. If a, b, c are natural numbers then which of the following is/are true:
(a) $a^{2}+b^{2}=c^{2}$
(b) Area of this right-angled triangle is always divisible by 3
(c) Area of this right-angled triangle is always divisible by 5
(d) $a^{2}+b^{2} \leq c^{2}$

Ans: (a), (b) and (d).
Clearly (a) and (d) are correct by Pythagoras Theorem. (c) is not correct since $3,4,5$ form a right angle triangle with area 6 .
Every perfect square is of the form $3 k$ or $3 k+1$ (Proof similar to Problem $2)$. Hence, if c^{2} is of the form $3 k$, then a and b are both divisible by three (Since $a^{2}+b^{2}=c^{2}$), hence the area is divisible by three. Else, one of a^{2} or b^{2} is of the form $3 k+1$ and the other of form $3 k$. Hence, the area is divisible by three. (remember area $=a b / 2$)

