Exercise 2

- 1. If a is a positive integer, then $a^2 + a^4 \equiv 0 \pmod{5}$ if
 - (a) $a \equiv 2(mod5)$
 - (b) $a \equiv 3(mod5)$
 - (c) 5 divides a
 - (d) None of the above

Ans. (a),(b) and (c). Check by substitution

- 2. If n is a positive integer, such that $n^2 \equiv x \pmod{8}$. Which of the following is/are possible value(s) of x.
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 5

Ans: (a)

Let n = 4k + r, then $n^2 = 16k^2 + 8kr + r^2 \equiv r^2 \pmod{8}$. Hence, check for $r \in \{0, 1, 2, 3\}$

- 3. If p is a prime, then p can be congruent to which of the following modulo 12.
 - (a) 2
 - (b) 5
 - (c) 7
 - (d) 9

Ans: (a), (b) and (c). p = 2, p = 5, p = 7 are examples for the first three options respectively. (d) cannot be the answer as 3 divides all numbers of the form 12k + 9.

- 4. If a and b are real number then, the statement $\frac{a+b}{2} \ge \sqrt{ab}$
 - (a) is always true
 - (b) is true only when a and b are positive
 - (c) is true only when a = b
 - (d) is always false

Ans. (b)

 $(a-b)^2 \geq 0 \Rightarrow a^2 - 2ab + b^2 \geq 0 \Rightarrow a^2 + 2ab + b^2 \geq 4ab \Rightarrow \frac{(a+b)^2}{4} \geq ab$ If a and b are positive taking square-root on both sides does not change the inequality $\frac{a+b}{2} \geq \sqrt{ab}$

- 5. If x, y are two real numbers then which of the following is/are true
 - (a) $x^2 + y^2 \ge 2xy$ (b) $x^2 + y^2 \ge 2xy$ or $x^2 + y^2 \le xy$ (c) $x^2 + y^2 \ge 2xy$ and $x^2 + y^2 \ge 2x + 2y - 2$
 - (d) None of the above

Ans. (a), (b) and (c) $(x-y)^2 \ge 0 \implies x^2 + y^2 - 2xy \ge 0$ $(x-1)^2 + (y-1)^2 \ge 0 \implies x^2 + y^2 - 2x - 2y + 1 + 1 \ge 0$

- 6. If a and b are two primes $(a \neq b \text{ and } a, b \geq 2)$ then which of the following is/are true.
 - (a) $a^2 + b^2 \ge 13$
 - (b) $a^2 + b^2 \ge 34$ or ab is even
 - (c) $(a+b)^2 \ge 4ab$
 - (d) None of the above

Ans: (a), (b) and (c).

The two smallest primes satisfying the condition are 2 and 3, hence $a^2 + b^2$ is at least 13.

If ab is odd, the two smallest primes satisfying the condition are 3 and 5, hence $a^2 + b^2$ is at least 34. $(a+b)^2 \ge 4ab$ for all a and b

- 7. If n is a positive integer, such that $n^2 \equiv x \pmod{12}$. Which of the following is/are possible value(s) of x.
 - (a) 1
 - (b) 2
 - (c) 21
 - (d) 3

Ans: (a) and (c). Let n = 6k + r. This problem is then similar to problem 2.

- 8. Let a, b, c be the 3 sides of a right angled triangle with c as the hypotenuse. If a, b, c are natural numbers then which of the following is/are true:
 - (a) $a^2 + b^2 = c^2$
 - (b) Area of this right-angled triangle is always divisible by 3
 - (c) Area of this right-angled triangle is always divisible by 5
 - (d) $a^2 + b^2 \leq c^2$

Ans: (a), (b) and (d).

Clearly (a) and (d) are correct by Pythagoras Theorem. (c) is not correct since 3, 4, 5 form a right angle triangle with area 6.

Every perfect square is of the form 3k or 3k + 1 (Proof similar to Problem 2). Hence, if c^2 is of the form 3k, then a and b are both divisible by three (Since $a^2 + b^2 = c^2$), hence the area is divisible by three. Else, one of a^2 or b^2 is of the form 3k + 1 and the other of form 3k. Hence, the area is divisible by three. (remember area = ab/2)